Author Abstract
Many online markets are characterized by sellers that stock large numbers of products and sell each product infrequently. At the same time, consumer browsing information is typically tracked by online retailers and is much more abundant than purchase data. We propose a demand model that caters to this type of setting. Our approach, which is based on search and purchase data, is computationally light and allows for flexible substitution patterns. We apply the model to a data set containing browsing and purchase information from a retailer stocking over 500 products, recover the elasticity matrix, and solve for optimal prices for the entire assortment.
Paper Information
- Full Working Paper Text
- Working Paper Publication Date: September 2018
- HBS Working Paper Number: HBS Working Paper #19-022
- Faculty Unit(s): Marketing