Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Working Knowledge
Business Research for Business Leaders
  • Browse All Articles
  • Popular Articles
  • Cold Call Podcast
  • Managing the Future of Work Podcast
  • About Us
  • Book
  • Leadership
  • Marketing
  • Finance
  • Management
  • Entrepreneurship
  • All Topics...
  • Topics
    • COVID-19
    • Entrepreneurship
    • Finance
    • Gender
    • Globalization
    • Leadership
    • Management
    • Negotiation
    • Social Enterprise
    • Strategy
  • Sections
    • Book
    • Podcasts
    • HBS Case
    • In Practice
    • Lessons from the Classroom
    • Op-Ed
    • Research & Ideas
    • Research Event
    • Sharpening Your Skills
    • What Do You Think?
    • Working Paper Summaries
  • Browse All
    Testing a Purportedly More Learnable Auction Mechanism
    03 Mar 2008Working Paper Summaries

    Testing a Purportedly More Learnable Auction Mechanism

    by Katherine L. Milkman, James Burns, David C. Parkes, Gregory M. Barron and Kagan Tumer
    Each year, auctions are used to determine how billions of dollars of goods and services will be allocated across the globe. On eBay alone, $52.5 billion in merchandise was exchanged in 2.4 billion auctions conducted during fiscal year 2006. Considerable attention has been paid in the academic literature to the question of how to design auctions with efficient allocation and revenue-maximizing properties. However, in part because auction rules are typically published and standard theory assumes economic agents are capable of computing optimal strategies from published rules, little attention has been paid to the question of how to design auctions whose optimal strategies are easy to learn. Evidence suggests that even when auction rules are published and dominant strategies exist, people nonetheless struggle and sometimes fail to learn to play their optimal strategy. As a result, the authors argue that the question of how to design a learnable, strategy-proof auction mechanism is an important one. Key concepts include:
    • Designers of auction mechanisms should create mechanisms that are easier for people to learn.
    • This paper describes an auction mechanism that has received attention in the computer science literature because of its theoretical property of being more learnable than the standard mechanism. In fact, the new mechanism produced slower learning in human subjects than the standard mechanism.
    LinkedIn
    Email

    Author Abstract

    We describe an auction mechanism in the class of Groves mechanisms that has received attention in the computer science literature because of its theoretical property of being more "learnable" than the standard second price auction mechanism. We bring this mechanism, which we refer to as the "clamped second price auction mechanism," into the laboratory to determine whether it helps human subjects learn to play their optimal strategy faster than the standard second price auction mechanism. Contrary to earlier results within computer science using simulated reinforcement learning agents, we find that both in settings where subjects are given complete information about auction payoff rules and in settings where they are given no information about auction payoff rules, subjects converge on playing their optimal strategy significantly faster in sequential auctions conducted with a standard second price auction mechanism than with a clamped second price auction mechanism. We conclude that while it is important for mechanism designers to think more about creating learnable mechanisms, the clamped second price auction mechanism in fact produces slower learning in human subjects than the standard second price auction mechanism. Our results also serve to highlight differences in behavior between simulated agents and human bidders that mechanism designers should take into account before placing too much faith in simulations to test the performance of mechanisms intended for human use.

    Paper Information

    • Full Working Paper Text
    • Working Paper Publication Date: February 2008
    • HBS Working Paper Number: 08-064
    • Faculty Unit(s): Negotiation, Organizations & Markets
      Trending
        • 14 Mar 2023
        • In Practice

        What Does the Failure of Silicon Valley Bank Say About the State of Finance?

        • 16 Mar 2023
        • Research & Ideas

        Why Business Travel Still Matters in a Zoom World

        • 25 Jan 2022
        • Research & Ideas

        More Proof That Money Can Buy Happiness (or a Life with Less Stress)

        • 25 Feb 2019
        • Research & Ideas

        How Gender Stereotypes Kill a Woman’s Self-Confidence

        • 13 Mar 2023
        • Op-Ed

        How Leaders Should Leave

    Find Related Articles
    • Technology Adoption
    • Web Services

    Sign up for our weekly newsletter

    Interested in improving your business? Learn about fresh research and ideas from Harvard Business School faculty.
    This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
    ǁ
    Campus Map
    Harvard Business School Working Knowledge
    Baker Library | Bloomberg Center
    Soldiers Field
    Boston, MA 02163
    Email: Editor-in-Chief
    →Map & Directions
    →More Contact Information
    • Make a Gift
    • Site Map
    • Jobs
    • Harvard University
    • Trademarks
    • Policies
    • Accessibility
    • Digital Accessibility
    Copyright © President & Fellows of Harvard College